
Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and Moldova
for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr kazymyr
Version: 1.0

SREE platform - demonstrator, pilot, prototype

Deliverable D3.2

Volodymyr Kazymyr
CPNU

Version 1.1
29.11.2024

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

2

Record of changes

Version

Status of

document
Date Authors Comments

0.1 Draft version 15.11.2024 V. Kazymyr Draft version

1.0 Full version 24.11.2024 V. Kazymyr Consolidated version

1.1 Final version 29.11.2024 V. Kazymyr QA version

Quality assurance

No. Date Version Approved by

1 29.11.24 1.1 Robert Madalin Chivu

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

3

CONTENTS

1 SUMMARY OF THE REPORT ... 4

2 SREE PROTOTYPE OVERVIEW .. 5
2.1 ARCHITECTURE ... 5
2.2 COMPONENT OVERVIEW ... 6

2.2.1. Raspberry Pi back-end component ... 6
2.2.1.1. Back-end programming language choice ... 6
2.2.1.2. Back-end programming framework choice .. 6
2.2.2. Raspberry Pi client software component .. 7
2.2.2.1. Client software programming framework choice ... 7

2.3 SREE PROTOTYPE HARDWARE CATALOGUE .. 8
2.4 SREE PROTOTYPE SOFTWARE CATALOGUE ... 9
2.5 PROTOTYPE PERFORMANCE/CAPACITY ... 9
2.6 PROTOTYPE SECURITY AND SAFETY ... 9

3 SOFTWARE SPECIFICATION ... 9
3.1 BACK-END SOFTWARE SPECIFICATION ... 9
3.2 FRONT-END SOFTWARE SPECIFICATION ... 12

4 USER INTERFACE DEFINITION .. 13
4.1. MAIN WINDOW OF SREE WEB-INTERFACE .. 13
4.2. DIGITAL INPUTS ... 14
4.3. FUNCTIONAL SIGNAL GENERATOR .. 15
4.4. OSCILLOSCOPE ... 15
4.5. WEB-CAMERA ... 16

5 PROTOTYPE DEPLOYMENT .. 16
5.1. HARDWARE DEPLOYMENT .. 16
5.2. SOFTWARE DEPLOYMENT ... 17

6 PILOT DEMONSTRATION USER MANUAL .. 17
6.1 PREPARATION AND UPLOADING OF MCU FIRMWARE .. 17
6.2 PREPARATION AND UPLOADING OF FPGA FIRMWARE ... 21
6.3 LAUNCHING PILOT DEMONSTRATION .. 26

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

4

 1 Summary of the Report

In our time, when the countries are under the epidemic and wars, it is very important for

educational institutions to provide their students with the opportunity to fully continue their work

remotely. All specialties, the study of which requires the presence of certain physical

equipment, encountered problems, as teachers need to find ways to provide students with all

the necessary equipment for study. Those specialties that study hardware development, in

particular digital circuitry using programmable logic integrated circuits and microprocessors,

encountered such problem. Therefore, the question of creating such an application that will

allow students to perform laboratory work online, for which they only need access to the

Internet, becomes crucial.

The main objective of the project is to address the regional and specific priorities and neds of

Moldavian and Ukrainian partners and to support the further reformation of Ukrainian and

Moldavian HEIs according to the CBHE call priorities and ET2020 strategy of European Union.

Development of SREE within the DIGITRANS project is one of the project priorities, which is

related to the tasks of WP3. The aim of this Report is to demonstrate a pilot of the Sharing

Remote Experiment Environment (SREE) platform and to describe the prototype of the

platform.

Objectives of SREE:
- Developing the Sharing Remote Experiment Environment (SREE) platform for on-line

laboratory works with physical equipment of remote laboratories for learning and teaching
practical topics in computer and electronic engineering.

- Integrating SREE with Sharing Modelling and Simulation Environment (SMSE) that affords
virtual laboratories based on open software kernels using Jupiter Notebooks, for resulting
acquisition and piloting of Digital Learning Ecosystem (DLE).

- Creating methodology of implementing and sharing remote applications of the HEIs
laboratories' equipment and software tools for distance usage in framework of DLE based
on application of ICT tools.

Component Limitation: purchased hardware for two laboratories, open-source software.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

5

 2 SREE prototype overview

 2.1 Architecture

The general idea is to provide laboratory work using FPGA and MCU boards remotely, namely

to test the operation of digital circuits implemented on FPGA or MCU, but the user only needs

a PC with Internet access for this. The SREE architecture designed for this, is shown in Figure

1.

Figure 1 Architecture of SREE base platform

The main components of SREE include:

- Front-end: Client PC with web interface.
- Server that is responsible for user and sessions management.
- Raspberry Pi that is responsible for the laboratory work workflow and interaction with the

hardware.
- Analog Discovery 2 digital oscilloscope used for buttons emulation and measuring signals

on the board.
- Web camera that is processed by the back-end and is used to show the Client the real-

time video of the hardware.

The Raspberry Pi runs Nginx, Golang back-end and React front-end.
The Nginx is used in the system as a webserver for the client-side (front-end) software serving
and as a reverse-proxy for the back-end to create a single point of entry for easier network and
CORS configuration.
The Raspberry Pi software is accessed directly by the Client during the laboratory work
session. At the same time, it’s accessible by the Server for a configuration and management
purposes.
The Golang back-end implements the laboratory work session, serves the front-end requests
and controls the hardware: it flashes MCU/FPGA and writes/reads data to/from Analog
Discovery 2.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

6

 2.2 Component overview

2.2.1. Raspberry Pi back-end component

2.2.1.1. Back-end programming language choice

Since the main task of the backend is to transfer signals from the client to the Raspberry Pi,
only converting one signal format to another, a technology that excels at handling concurrent
operations and has efficient I/O processing is best suited for this task.
Another important criterion for choosing a technology is its popularity, as it is identical to the
quality of technology support, the number of libraries and frameworks, documentation and
ready-made solutions. An additional advantage of popular technologies is a large user base,
that is a community, which allows to reduce the number of errors, and therefore to increase
the speed of development, thanks to the use of time-tested solutions.
Important issue is the "cost" of the chosen technology. Go programs are compiled to machine
code, which provides excellent performance and efficient resource utilization compared to
interpreted languages. Unlike languages that require significant server resources due to heavy
runtime environments, Go's lightweight runtime and garbage collector ensure minimal
overhead.
The safety of the technology is also important. Go was designed with security in mind from the
ground up, featuring built-in memory safety, garbage collection, and strong type checking.
These features help prevent common security vulnerabilities like buffer overflows and memory
leaks that plague languages like C and C++.

Go's strong typing system and clear interface definitions allow for straightforward API contracts
between services. Go's ability to generate API documentation and interface specifications
makes it easy to maintain consistency across different parts of the system, even in a polyglot
environment.
Go fully satisfies the above criteria:

− Go is an open-source programming language developed by Google, specifically
designed for building scalable and maintainable backend systems.

− Go implements built-in concurrency through goroutines and channels, which provides
an elegant and efficient way to handle multiple connections and I/O operations without
the complexity of manual thread management.

− Go's standard library includes robust networking capabilities and a high-performance
HTTP server, making it ideal for building APIs and network services. The language's
garbage collector is optimized for low-latency applications, ensuring consistent
performance without unexpected pauses.

− Go іs compilation model produces single static binaries that include all dependencies,
making deployment simple and eliminating runtime dependency issues, which is
particularly beneficial for deployment on embedded systems like Raspberry Pi.

2.2.1.2. Back-end programming framework choice

When developing a backend service in Go, the choice of web framework significantly impacts
development speed, maintainability, and performance. While Go's standard library provides a
robust net/http package, using a framework can substantially reduce boilerplate code and
provide additional useful features without sacrificing Go's inherent performance benefits.
The primary criteria for selecting a web framework include:

− Performance characteristics, especially under concurrent load

− Community size and active maintenance

− Learning curve and documentation quality

− Built-in middleware ecosystem

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

7

− API design flexibility.

Gin Framework satisfies these requirements and provides several distinct advantages:

− Gin is built on top of “httprouter” module, which provides extremely fast HTTP request

routing through the use of a radix tree structure, making it up to 40 times faster than

Go's default multiplexer

− The framework is widely adopted in the Go ecosystem, being one of the most starred

Go web frameworks on GitHub (over 70k stars), which ensures long-term maintenance

and a rich ecosystem of third-party middleware

− Gin provides a clean, intuitive API that follows Go's philosophy of simplicity and

explicitness, making it easy for both beginners and experienced developers to work

with

− The framework includes built-in support for common web development tasks.

While alternatives like Echo, Fiber, and Chi were also considered, Gin was chosen for several

specific reasons:

− Its middleware system is simple yet powerful, allowing easy integration of custom

processing logic for authentication, logging, and error handling

− The framework's support for binding request data to Go structs reduces the amount of

manual parsing code needed

− Gin's error management approach aligns well with Go's error handling patterns while

providing additional convenience methods

− The framework's minimal memory footprint and zero allocation router make it

particularly suitable for running on resource-constrained systems like Raspberry Pi

For the signal processing backend, Gin's routing capabilities and middleware system are
particularly valuable as they allow us to:

− Easily set up different endpoints for various signal types

− Implement request validation to ensure signal format correctness

− Add authentication and authorization layers

− Handle WebSocket connections for real-time signal transmission (if needed)

− Implement rate limiting and request throttling when needed

2.2.2. Raspberry Pi client software component

2.2.2.1. Client software programming framework choice

Alongside with a server component that is responsible for sending responses back to user,

additional component that allows generating requests is also necessary. Client in web

developing sphere is also known as frontend, while server part is commonly called backend.

The main tasks of the frontend are producing requests and providing human machine interface

as an intermediate component between user input and server data. Generally, program code

is stored on the server. This approach helps us simplify project structure and automatically

install all updates for all possible users (it is because web applications can be accessed on

any device via the browser: from portable smartphones to large PCs). Similar to server, there

are several frameworks for client software that can be used in the process of web application

development.

It is important to note that in this system frontend part delivers to end user single-page web

application, where all input and output components can be accessed through only one web

page.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

8

Creating new large-scale applications with the use of programming or markup language as the

only one component is a time-consuming process in a modern world. That is why frameworks

were invented. Framework is a program platform which defines project structure, its file

subsystem and is built based on a programming language. For instance, Spring is a Java-

based framework for simplifying creation and testing of corporate applications.

There are many frameworks for writing effective and attractive single-page applications: React,

Angular, Vue.js, Backbone.js, Mithril etc. However, from this variety of program platforms only

three of them are commonly used: React, Angular and Vue.js.

React (also known as React.js or ReactJS) is a free and open-source front-end JavaScript

library that aims to make building user interfaces based on components more "seamless". It is

maintained by Meta company and a community of individual developers and companies. This

framework can be used to develop single-page, mobile, or server-rendered applications with

frameworks like Next.js. Because React is only concerned with the user interface and

rendering components to the DOM, React applications often rely on libraries for routing and

other client-side functionality. A key advantage of React is that it only re-renders those parts

of the page that have changed, avoiding unnecessary re-rendering of unchanged DOM

elements. That is why it can be very powerful for applications with dynamic components

generating.

Another one single-page framework is Angular. Angular (also referred to as "Angular 2+") is a

TypeScript-based free and open-source web application framework, developed by Google and

by a community of individuals and corporations. Angular is a complete rewrite from the same

team that built AngularJS. The Angular ecosystem consists of a diverse group of over 1.7

million developers, library authors, and content creators. According to the Stack Overflow

Developer Survey, Angular is one of the most commonly used web frameworks. Main features

include component-based architecture, data binding, dependency injection, server-side

rendering, routing and use of directives.

Vue.js (also referred to as Vue) is an open-source model–view–viewmodel frontend JavaScript

framework for building user interfaces and single-page applications. It was created by Evan

You and is maintained by him and the rest of the active core team members. Vue.js features

an incrementally adaptable architecture that focuses on declarative rendering and component

composition. The core library is focused on the view layer only. Advanced features required

for complex applications such as routing, state management and build tooling are offered via

officially maintained supporting libraries and packages. Vue.js allows for extending HTML with

HTML attributes called directives. The directives offer functionality to HTML-applications, and

come as either built-in or user defined directives. This framework also features a reactivity

system that uses plain JavaScript objects and optimized re-rendering. Each component keeps

track of its reactive dependencies during its render, so the system knows precisely when to re-

render, and which components to re-render.

As we stated before, our web application includes different input and output components that

are generated dynamically based on conditions. Furthermore, it is important to note that we

should use solutions which are regularly maintained by developers. For these cases the most

appropriate choice is the React framework.

 2.3 SREE Prototype Hardware catalogue

− Server, routing equipment – 1 set.

− Network equipment - 1 set.

− Single-board computers (Raspberry Pi 4) – 1 pcs.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

9

− Development boards for digital design (FPGA boards) – 1 pcs;

− Development boards for microcontroller systems (MCU boards) – 1 pcs;

− Webcam – 1 pcs;

− Laptop – 1 pcs;

− APC Smart – 1 pcs.

 2.4 SREE Prototype Software catalogue

Free software for programming of MCU/FPGA boards:

− Web browser with Internet connection;

− STM32CubeIDE for the MCU (accessible by link https://www.st.com/en/development-

tools/stm32cubeide.html);

− Intel Quartus Prime Lite for the FPGA (accessible by link

https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-

edition-design-software-version-20-1-1-for-windows.html).

 2.5 Prototype performance/Capacity

− 1 prototype work place

− 1 GB disk space for user

 2.6 Prototype Security and Safety

Communications should have a secure connection. Need SSL certificates for HTTPS.

 3 Software specification

 3.1 Back-end software specification

The back-end project contains of the “main.go” file with all the used modules imports and

initializations and has a “internal” folder which contains multiple subfolders for each used

module.

The implemented modules are:

− Analog Discovery

− Camera

− Config

− FPGA

− STM32 Flash

The Analog Discovery module implements various features including setting output voltages

for buttons emulation.

The Camera module creates an “/stream” endpoint that produces a stream of video frames

used by the front-end.

The Config module is responsible for parsing the .env file content for the project configuration:

setting paths, used pin numbers, etc.

The FPGA and STM32 Flash models are used for FPGA and STM32 flashing respectively.

It’s possible to flash the FPGA via Raspberry Pi’s GPIO directly without the USB Blaster using

a created by us software that is a fork of a urjtag tool changed to support the new GPIO drivers

using a C programming language.

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

10

The STM32 is flashed using “stm32flash” tool and is set to bootloader mode using GPIO

controlled by the “pinctrl” tool.

The project also contains the docker-compose.yml file together with the nginx.conf file both

used for the Nginx setup as a docker container.

The main.go content with all the initializations and endpoints creations is represented below:

var outputPins = []int{0, 1, 2, 3}

var outputChannels = []int{0, 1}

var wavegenFunctions = []string{"sine", "rampup", "triangle", "pulse"}

func main() {

r := gin.Default()

cfg, err := config.LoadConfig()

if err != nil {

log.Fatalf("Error loading config:", err)

}

cam, err := camera.NewWebcamServer("/dev/video0")

if err != nil {

log.Fatal(err)

}

defer cam.Close()

device, err := analogdiscovery.CreateDevice()

if err != nil {

log.Fatalf("Error creating Analog Discovery device: %v", err)

}

for _, outputPin := range outputPins {

device.SetPinMode(outputPin, true)

}

r.POST("/api/firmware/fpga", handleFirmware(*cfg, true))

r.POST("/api/firmware/mcu", handleFirmware(*cfg, false))

r.POST("/api/write-pin", handleWritePin(device))

r.POST("/api/wavegen/write-channel", handleWavegenEnableChannel(device))

r.POST("/api/wavegen/write-function", handleWavegenFunctionSet(device))

r.POST("/api/wavegen/write-amplitude", handleWavegenAmplitudeSet(device))

r.POST("/api/wavegen/write-frequency", handleWavegenFrequencySet(device))

//r.POST("/api/wavegen/duty-cycle")

r.POST("/api/wavegen/write-config", handleWavegenRun(device))

r.Any("/api/stream", cam.ServeHTTP)

log.Fatal(r.Run(":" + cfg.PORT))

}

func handleFirmware(cfg config.Config, isFPGA bool) func(c *gin.Context) {

return func(c *gin.Context) {

// Limit the size of the request body

c.Request.Body = http.MaxBytesReader(c.Writer, c.Request.Body, maxUploadSize)

if err := c.Request.ParseMultipartForm(maxUploadSize); err != nil {

c.JSON(http.StatusBadRequest, gin.H{"error": "File too large"})

return

}

// Get the file from the request

file, err := c.FormFile("file")

if err != nil {

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

11

c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})

return

}

postfix := "MCU"

if isFPGA {

postfix = "FPGA"

}

fp := filepath.Join(uploadPath, postfix)

c.SaveUploadedFile(file, fp)

fmt.Println("Firmware file uploaded:", file.Filename, " to ", fp, " for ",

postfix)

if isFPGA {

fmt.Println("Flashing FPGA")

device := fpga.CreateFPGA(cfg.TDI, cfg.TDO, cfg.TCK, cfg.TMS)

err = device.Flash(fp)

} else {

fmt.Println("Flashing STM32")

err = stm32flash.Flash(fp, cfg.RESET_PIN, cfg.BOOT0_PIN)

}

if err != nil {

fmt.Println("Error flashing device:", err)

c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})

return

}

c.JSON(http.StatusOK, gin.H{"message": "Firmware flashed successfully"})

}

}

type WritePinRequest struct {

Pin int `json:"pin"`

State int `json:"state"`

}

func handleWritePin(device *analogdiscovery.AnalogDiscoveryDevice) func(c

*gin.Context) {

return func(c *gin.Context) {

var pinReq WritePinRequest

decoder := json.NewDecoder(c.Request.Body)

if err := decoder.Decode(&pinReq); err != nil {

c.JSON(http.StatusBadRequest, gin.H{"error": "Invalid request body"})

return

}

if !isPinAllowed(pinReq.Pin) {

c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("Invalid pin,

only %v are allowed", outputPins)})

return

}

}

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

12

Back-end repository is located on the link https://github.com/vtinkerer/mcu-and-fpga-remote-

lab and FPGA firmware to programming of FPGA is located on the link

https://github.com/vtinkerer/Raspberry-Pi-Flash-FPGA-using-GPIO.

 3.2 Front-end software specification

Front-end software is written with the use of web development technologies: HTML, CSS,

JavaScript, and frameworks: Bootstrap (CSS-based framework) and React (JavaScript-based

framework).

The main source code is stored inside /src project directory. Each element in it is either a level-

down directory or React component (file that ends with .js extension).

The entire structure of /src directory consists of these elements:

− /img (directory that stores all images which are non-Bootstrap icons or non-HTML-

elements)

− /styles (directory where all CSS-styles are defined)

− /utils (directory with the only one file called get-url-for-request.js, which is responsible

for convenient obtaining of HTTP-request URL)

− App.js (main component, which is represented with web page containing all tools)

− AppCountdown.js (special component that works as an experiment countdown)

− CameraView.js (component which contains a frame where real-time video from

laboratory is being shown)

− DigitalInputs.js (component with digital inputs that can work in one of three modes:

‘Button’, ‘Switch’, ‘Gen’)

− DigitalInputsButton.js (component that is rendered when ‘Button’ mode of Digital Inputs

is chosen)

− DigitalInputsSwitch.js (component that is rendered when ‘Switch’ mode of Digital Inputs

is chosen)

− DigitalInputsGen.js (component that is rendered when ‘Gen’ mode of Digital Inputs is

chosen)

− FunctionalGenerator.js (includes FunctionalGeneratorChannel.js)

− FunctionalGeneratorChannel.js (component for device that allows students to generate

different types of signals (sine, ramp up, triangle and pulse) with a preferred amplitude,

frequency and duty cycle values)

− Index.js (entry point for the whole web application)

− Instructions.js (set of instructions for the laboratory work)

− ProgramDevice.js (component that allows users to program FPGA or MCU (read more

about it in 3.3 “Firmware specification”))

− Scope.js (component for Oscilloscope)

− ScopeChart.js (component for Oscilloscope chart, where users can investigate

captured signals).

Typical React component in /src directory contains function definition (JSX markup), import

statements, hooks for action handlers and export statement (this allows component to be used

inside another one). Moreover, some of them include transferring specific data to the child

components (for instance, DigitalInputs passes ‘channel’ property value to its child component

(either DigitalInputsGen, DigitalInputsSwitch or DigitalInputsButton). The same can be said

about Scope and ScopeChart, FucntionalGenerator and FunctionalGeneratorChannel.

https://github.com/vtinkerer/mcu-and-fpga-remote-lab
https://github.com/vtinkerer/mcu-and-fpga-remote-lab
https://github.com/vtinkerer/Raspberry-Pi-Flash-FPGA-using-GPIO

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

13

In a /styles directory all CSS-styles for respective React components are placed. It is important

to note that there are no special CSS-files for subcomponents (for example, all styles of

ScopeChart.js, which is a subcomponent of Scope.js, are stored inside Scope.css). Also keep

in mind the usage of Bootstrap framework, so that custom-defined CSS-styles in most cases

are sets of additional classes and properties with the purpose to modify basic Bootstrap

components (buttons, markup, columns etc.).

In order to dynamically display some elements of a React component functions with a render

prefix are implemented. It means that if condition of some variable or hook is met, then one

<div> block will be shown, and, if not, then another one will be displayed. This also allows us

to dynamically define colours of texts (for instance, if text means success of performed

operation, then make it look like green, if it means failure, then make this text red).

The FunctionalGeneratorChannel, CameraView and DigitalInputsButton components currently

include HTTP-requests to the server. In the future similar requests are going to be added to

DigitalInputsSwitch, DigitalInputsGen and Scope. After receiving JSON-response from server

components are rendered dynamically too.

Communication between server and client is being handled thanks to JSON-requests and

JSON-responses. However, there is one exception from this rule for ProgramDevice

component. There a FormData object is used in order to upload firmware for MCU or FPGA

board.

Front-end repository is located on the link https://github.com/BogdanVeligorskyi/mcu-and-

fpga-remote-lab-frontend.

 4 User interface definition

4.1. Main window of SREE web-interface

The main window of web-interface is shown in Figure 2.

Figure 2. The main window of the web-interface

https://github.com/BogdanVeligorskyi/mcu-and-fpga-remote-lab-frontend
https://github.com/BogdanVeligorskyi/mcu-and-fpga-remote-lab-frontend

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

14

In this implementation Program MCU and Program FPGA features are combined inside one

web page and programmable device can be chosen by checking its checkbox in submenu

(Figure 3) that is called by click on button .

Figure 3. The submenu of main window

Also, from the submenu it is possible to switch ON/OFF the deference frames of main window

to show the control panels. The timer on upper line of main window show time that is

leave in current lab session on the work place.

4.2. Digital inputs

An example of web-based interface to set up of input signals is shown in Figure 4.

Figure 4. Web-based interface to set up of input signals

Digital input interface consists of 4 elements, each of them can be configured as one of three

input functions: “Button”, “Switch”, “Generator”, or as “None”, if it is not used.

The function “Button” provides user following functionality: when grey button is pressed, then

pin is set to logical “1”, and when it is released, then pin is set to logical “0”.

In contrast with the “Button”, the function “Switch” has another principle of the operation. In

order to set logical “1”, student needs to press switch below the channel radio buttons and

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

15

move it to the right side. After that student can set the logical “0” by moving pressed switch to

the left side.

The function “Generator”, when it is selected, provide for any out of 4 digital inputs the

functionality of the simple functional generator with PWM-signal. User can on it or off by means

of the “on/off” switch, as well as set a duty cycle (in the range from 0 to 100 %) and frequency

(from 1 kHz to 30 kHz).

4.3. Functional signal generator

Web-interface for the functional signal generator, that can be used for the producing of several

most commonly used types of signals, is shown in Figure 5.

Figure 5. Web interface of the functional signal generator

User can set one of the following types of the signal: sine. ramp up, triangle and pulse. The

ranges of the signal parameters are set by utilizing such input elements, as knobs on the round

sliders. Parameters are amplitude, frequency and duty cycle.

4.4. Oscilloscope

An Oscilloscope will be connected which enables opportunity to view and examine captured

signals. Its web interface is shown in Figure 6.

Figure 6. Web interface of Scope component

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

16

Student can change vertical (Y) and horizontal (X) scales of virtual oscilloscope and choose
appropriate position by moving knobs on round sliders. Furthermore, in order to gain real
experience, users have option to select trigger level value, trigger source option and trigger
fail/rise mode.

4.5. Web-camera

Web-camera (or Camera View From Lab) demostrates video from laboratory where all the

equipment and hardware is connected. Thanks to web-camera student can see how devices

and LEDs react to the user input. For instance, when student presses button in Digital Inputs,

a LED lights on. This brings more interactivity to the remote laboratories experiment.

However, there is one more element that needs to be explained. That is on/off switch. By

default its value is set to off, which means that camera is switched off, and instead of real-time

video student sees black block. When camera is switched on, then video starts demonstrating

with approximately 1-second delay. Web-camera frame is shown in Figure 7.

 Figure 7. Web-camera frome

 5 Prototype deployment

5.1. Hardware deployment

The structures of hardware deployment for two variant of prototype realization is shown

in Figure 8. Deference is in absent of USB and I2C connections between Raspberry PI 4 and

FPGA plate.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

17

a) MCU variant b) FPGA variant

Figure 8. MCU/FPGA prototype hardware structure

5.2. Software deployment

The back-end is deployed as a simple Golang process started by the PM2 software so it can

be easily restarted on reboot together with a PM2’s Logs module for a convenient logs

manipulation and log files rotation.

The Nginx is deployed as a docker container for a simplicity purpose and as a future-proof

decision for multiple Nginx instances on the board if needed.

The front-end is built on the host-machine by Node.js and served as a .js, .css and .html files

by the Nginx directly from the build folder, so each build process causes Nginx to serve the

new files immediately.

The reworked by us urjtag version is in the home directory of the Raspberry Pi and accessed

by the back-end as a child process.

The whole system is located on the Raspberry Pi’s SD card, which image can be easily

duplicated when needed to increase the number of Raspberry Pi instances.

 6 Pilot demonstration user manual

 6.1 Preparation and uploading of MCU firmware

Considering that the SREE platform is intended for lab exercises, the student needs to have

special software (IDE) for generating firmware. This firmware will be uploaded remotely to the

MCU board connected to the SREE via a web interface, as shown in Figure 7. To do this, the

student needs to perform the following steps.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

18

1. Write the program in C language in STM32CubeIDE software according to the technical

task, for example, the LED blinking effect. When the button is pressed all the discrete LEDs

on the Nucleo-H723 IO Shield are blinking and when the button is not pressed all the LEDs

are switched on constantly. To do this create the project in the STM32CubeIDE for the

STM32H723ZG MCU with the next settings of the clocks (see Figures 9 and 10) and GPIOs

(see Figures 11 and 12). Then add the following portion of C code to the endless loop in the

main function (see Figure 13):
// While Button 1 is pressed (high-level signal) blink the LEDs
while (HAL_GPIO_ReadPin(Button1_GPIO_Port, Button1_Pin))
{
 // Toggle the state of the LED1, LED2, LED3, and LED4 connected to the GPIO
 // port F pins of the MCU
 HAL_GPIO_TogglePin(GPIOF, LED1_Pin | LED2_Pin | LED3_Pin | LED4_Pin);
 // Toggle the state of the LED5, LED6, LED7, and LED8 connected to the GPIO
 // port B pins of the MCU
 HAL_GPIO_TogglePin(GPIOB, LED5_Pin | LED6_Pin | LED7_Pin | LED8_Pin);
 // Delay 500 ms
 HAL_Delay(500);
}
// When Button 1 is not pressed anymore check the state of the LEDs (one LED is //

enough because all the LEDs are blinking simultaneously and therefore have the

// same state)

if (HAL_GPIO_ReadPin(GPIOF, LED1_Pin) == GPIO_PIN_RESET)
{
 // If the LEDs are off, toggle the state of the LEDs
 HAL_GPIO_TogglePin(GPIOF, LED1_Pin | LED2_Pin | LED3_Pin | LED4_Pin);
 HAL_GPIO_TogglePin(GPIOB, LED5_Pin | LED6_Pin | LED7_Pin | LED8_Pin);
}

2. Generate the hex file, which will be uploaded remotely to MCU board. For this purpose the

option “Convert to Intel Hex file (-O ihex)” in the Project>>Properties>>C/C++

Build>>Settings>>MCU/MPU Post build outputs should be set. Finally the project

compilation and linking must be done by the command Project>>Build Project. The

generated hex file can be found in the project tree's Debug or Release folder (depending on

the active build configuration).

3. Upload the hex file through the web-interface to MCU board by choosing the file in your

computer and clicking "Program MCU" (see Figure 14).

4. Interact with the hardware (MCU/FPGA boards) remotely via the web interface of SREE, for

example by pushing button 1 (see Figure 4), or by using switch 1. The responses of the MCU

board to the input signal can be monitored by the web-camera (LED indicators, displays on the

MCU board IO Shield).

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

19

Figure 9. MCU RCC settings

Figure 10. MCU Clock configuration

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

20

Figure 11. MCU GPIO select

Figure 12. MCU GPIO settings

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

21

Figure 13. Blinking LEDs program infinite loop

Figure 14. MCU remote programming dialogue in the SREE web-interface

 6.2 Preparation and uploading of FPGA firmware

Generation of a firmware file for an FPGA development board in Intel Quartus Prime Lite

software is carried out in several stages and requires project configuration. The following will

provide step-by-step instructions for setting up the project, taking into account safety

requirements and the need to use peripheral modules of the development board.

The Intel Quartus Prime software organizes and manages the elements of your design within

a project. The project encapsulates information about your design files, hierarchy, libraries,

constraints, and project settings. This chapter describes the basics of working with Intel

Quartus Prime software projects, including initial project setup, viewing project information,

adding design files and constraints, and exporting compilation results.

Note! It is highly recommended to use a new folder for each Quartus Prime project.

Click File -> New Project Wizard to quickly setup and open a new project, Figure 15.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

22

Figure 15 – New project wizard

The most critical step in new project generation is Family, Device & board settings. At this

window user must correctly chose FPGA model presented in laboratory. In this case it is Altera

Cyclone IV EP4CE10E228N. If precisely EP4CE10E228N is absent in Quartus Prime device

library for Cyclone IV, user may choose EP4CE10E228 (see Figure 16).

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

23

Figure 16 – Choose the correct device

Figure 17 – Unused pins safety setting

There are only four user programmed buttons and four LEDs on the development board

physically. The connection to FPGA pin schematic is demonstrated in Figure 18. Active logic

level for LED light is LOW (“0”) and LOW (“0”) for pressed buttons.

The pin numbers for LEDs, buttons and 7-Segment LED display are presented in table 1.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

24

Figure 18 – Schematic connection of LEDs, buttons7-Segment LED display

Table 1 – Pin numbers and functions

Name Pin number I/O type Logic level

KEY1 88 input 3.3V TTL

KEY2 89 input 3.3V TTL

KEY3 90 input 3.3V TTL

KEY4 91 input 3.3V TTL

LED1 87 output 3.3V TTL

LED2 86 output 3.3V TTL

LED3 85 output 3.3V TTL

LED4 84 output 3.3V TTL

DIG1 133 output 3.3V TTL

DIG2 135 output 3.3V TTL

DIG3 136 output 3.3V TTL

DIG4 137 output 3.3V TTL

SEG0 128 output 3.3V TTL

SEG1 121 output 3.3V TTL

SEG2 125 output 3.3V TTL

SEG3 129 output 3.3V TTL

SEG4 132 output 3.3V TTL

SEG5 126 output 3.3V TTL

SEG6 124 output 3.3V TTL

SEG7 127 output 3.3V TTL

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

25

To connect all necessary pins in your project design to development board pins use pin planner

in Quartus Prime tools menu (Figure 19). Choose the correct pin location for each signal in

your design. After that all pin numbers would be presented in block diagram schematic file.

Figure 19 – Pin connection in Pin planner

Quartus Prime software always generate SRAM Object File *.sof firmware file after compilation

of the project. It also generates Partial SRAM Object File *.psof or a Programmer Object File

*.pof depending on the device family.

To load the firmware file to the development board user must find *.sof file at the project folder

project_folder\output_files\%project_name%.sof and upload it to the web page.

Deliverable D3.2
Project: Digital transformation of HEIs education process in Ukraine and
Moldova for sustainable engagement with enterprises, DIGITRANS
101127683 — DIGITRANS — ERASMUS-EDU-2023-CBHE
Authors: Volodymyr Kazymyr
Version: 1.0

26

 6.3 Launching pilot demonstration

- To launch the pilot demonstration run the prototype from web-browser by link

http://195.69.76.135:8082/;

- In submenu switch ON Instruction, Program FPGA or MCU, Digital Inputs, Camera View,

Functional Generator and Scope flags;

- Chose a file with program for MCU (mcu.hex) or FPGA (fpga.svf) respectively from

https://github.com/vtinkerer/mcu-and-fpga-remote-

lab/commit/7bb0c1a5aa9bd62da9ce04ff903873301b7cbea6

- Follow the Instruction in main window that is shown in Figure 20.

Figure 20 – Pilot demonstration Instruction

Note: This D 3.2 Pilot doesn't allow training lab lessons but demonstrates only a working SREE

prototype and shows planned possibilities for online experiments with real equipment in remote

mode. Extended possibilities will be implemented in next D3.3, D3.4 and D3.5 deliverables.

http://195.69.76.135:8082/
https://github.com/vtinkerer/mcu-and-fpga-remote-lab/commit/7bb0c1a5aa9bd62da9ce04ff903873301b7cbea6
https://github.com/vtinkerer/mcu-and-fpga-remote-lab/commit/7bb0c1a5aa9bd62da9ce04ff903873301b7cbea6

