
SMSE manual

Table of Contents

1. SMSE architecture

1.1. SMSE data flow diagram

1.2. SMSE deployment diagram

2. SMSE User's Guide

2.1. Moodle side configuration

2.2. Jutyter hub configuration

2.3. Jutyter Lab configuration

2.3.1. Files and folders

2.3.2. Launchers

2.3.3. Kernels

3. Jupyter notebook

3.1. Jupyter notebook installation

3.2. Starting a Notebook

3.2.1. Running Jupyter

3.2.2. Work directory setting

3.2.3. Creating a new notebook document

3.2.4. Running a notebook

3.2.5. Running a notebook

3.2.6. Saving and downloding a notebook

3.2.7. Close and Shutdown Jupyter Notebook

3.2.8. Overview of the Notebook UI

3.3. Editing a notebook

3.3.1. Edit and Code modes

3.3.2. Markdown cells

3.3.3. Text editing

3.3.3.1. Text selection

3.3.3.2. Lists

3.3.3.3. Headings

3.3.3.4. Horizontal lines (separators)

3.3.3.5. Code Blocks

3.3.3.6. String code fragments

3.3.3.7. Quotes

3.3.3.8. Images

3.3.3.9. Links

3.3.3.10. Formulars

4. Examples

4.1. Jupyter notebook examples

4.1.1. Multikernel notebook example

4.1.2. OpenModelica kernel example

4.1.3. Matlab kernel example

4.2. New Moodle course example

1. SMSE architecture

Shared modelling and simulation environment (SMSE) is a tool for teaching / learning which supports of own teaching space as a notebook, creation of interactive courses with

programmable examples on different programming languages and modelling frameworks, using of tests for student examination, control of teaching process and user’s authorization

with remote access via browser. The SMSE is based on Moodle Leaning Management System and products of Project Jupyter. Additional plugins are used to support the execution of

various tasks. All software is open source.

1.1. SMSE data flow diagram

SMSE uses intermediate storage to exchange data between Moodle and Jupyter Lab.

1.2. SMSE deployment diagram

SMSE is located on three CPNU hosts: Moodle server, Git server and Jupyter Hub server.

Moodle server provides creation of a course and supports authentication of users. Git server executes procedures for creation an archive with Jupyter Notebook files and export of

the archive to Jupyter Lab. JupyterHub is a set of processes that together provide an own Jupyter Lab for each person in a group.

2. SMSE User's Guide

2.1. Moodle side configuration

To log on to SMSE you need to log in CPNU Moodle at link https://eln.stu.cn.ua/login/index.php?lang=en with your User name and Password:

After Moodle log in you have an access to CybPhys Course categories that includes two courses: Erasmus CybPhys Documentation and SMSE CybPhys.

Also, you can see a list of your courses including CybPhys Documentation, nine courses for eBooks developed in the project and Computer modeling test courses that used in SMSE

manual: Simulation and Computer modeling.

To enter to SMSE choose SMSE CybPhys link.

When the first log on to SMSE, you may be asked to perform the next sequencing to solve the connection certification problem:

1. Select Advanced button on this page

1. Click on link Proceed to

1. Press button Continue

To get acquainted with the SMSE, select Computer modeling course in the window that appears:

In addition to the standard Moodle course components, in General section this course contains link to SMSE on smse.stu.cn.ua:

Click on the SMSE on smse.stu.cn.ua to run SMSE.

2.2. Jutyter hub configuration

Once you are logged in SMSE the page of Jupyter hub is open:

JupyterHub allows users to interact with the SMSE from their web browsers using the Jupyter Lab interface, to lean course marials using Jupyter nootbooks and develop code in

Python, R, MATLAB, OpenModelica and many other languages. Due to the Jupyter Hub, many users work on the course at the same time - each user has his own copy of the server

as a virtual laboratory with the course documents stored in the Moodle database.

You can choose the Server for Course that was previously configured by administrator of SMSE, or select server from the list of Standard Server created in SMSE in advance:

For example, select "multikernel-nootbook" server and press Start button:

The server launching process will be followed by next sequence of windows:

When Jupyter server finished launching, your browser will show the JupyterLab dashboard. In SMSE, JupyterLab actualize the idea of virtual learning laboratory for online training of

students.

If you close JupyterLab window Jupyter server keeps working. To return to JupyterLab session start server from Moodle and click on "Go to working Server" button:

To correct exit from JupyterLab use menu File -> Hub control Panel, then choose "Stop my Server" option.

2.3. Jutyter Lab configuration

JupyterLab is the next-generation web-based user interface for Project Jupyter. JupyterLab enables you to work with documents and activities such as Jupyter notebooks, text

editors, terminals, and custom components in a flexible, integrated, and extensible manner. For acquaintance with its main features, you can view a short video following the link

https://youtu.be/A5YyoCKxEOU.

We are using the SMSE version of JupyterLab dashboard to allow users more control over the notebook workspace inside the browser:

To explore all the features of the JupyterLab interface, you can use the link https://jupyterlab.readthedocs.io/en/stable/user/interface.html.

2.3.1. Files and folders

The files and folders are shown on the left frame of the JupyterLab dashboard. Right-click on a file or folder will give you a number of operational options, as shown in the figure

below.

By default, the course directory is represented in File browser. Course directory contain all course sections that include Jupytter notebook documents. Course directory is avaible in

read-only mode but you can open a notebook and then save it in your lab for further work. We recommend for saving files use work folder or any new folder you create in home

directory because course directory is updated to the actual content of course in Moodle every time when you start your server again. Instead, all files in your home and working

directories are stored in your lab's repository and will be available in the future. The home directory structure for Computer modeling course is shown below.

To upload files from your computer to SMSE via the dashboard, click on the bold up arrow at the top of the file browser. You can rename file with notebook document and save it via

menu File-Save Notebook As. File will be saved in home directory but you can move it to work directory using drag-drop feature.

2.3.2. Launchers

Launchers are tabs in the main work area of the JupyterLab dashboard. They enables you to arrange notebooks and other activities (kernels, terminals, code consoles, etc.) into

panels of tabs. To create launcher, click on the "+" buttton at the top of the file browser.

On SMSE, there are three types of Launchers: Notebook, Console, and Other. Other includes browser-based terminal, text editors, and markdown editor. Default launcher contains

the list all available Jupyter notebook kernels defined for your server. Click on a kernel will launch the corresponding notebook in the current launcher tab. For example, if you click on

Python 3 kernel pictograph a new notebook with kernel Python 3 wiil be created.

Click on the "+" to create a new launcher.

The Console launcher will launch a command-based interface for the available Jupyter notebook kernels that your server has (note the similar list as the Notebook launcher).

Other section includes browser-based

- terminal - to execute server command

- text files and markdown files editors

- python and other languages editors according to your server configuration.

An example of a terminal launcher tab is shown below.

By default, the Terminal displays base environment with name of your home directory.

The most significant impact of the JupyterLab dashboard is its ability to rearrange multiple launcher tabs within the same browser, similar to a typical programming IDE. By dragging

the tabs around, you can have a versatile work environment as it is shown below.

2.3.3. Kernels

A Jupyter kernel is a “computational engine” that executes the code contained in a Jupyter Notebook document. Server can contain a several kernels installed SMSE adminisrator. In

SMSE you can not create your own kernels.

When you open a Notebook document, the associated kernel is automatically launched. When the notebook is executed (either cell-by-cell or with menu Cell -> Run All), the kernel

performs the computation and produces the results.

For all servers the default kernel is for Python 3.10.5 , and this is ready to be used when Jupyter is launched. If Jupyter notebook contains cells with code for different kernels you can

change kernel before run a code use menu Kernel->Change Kernel... and select required kernel from the list of available kernels:

You can working with existing Jupyter notebook documents or create new ones directly in JupyterLab or using your local PC both with JupyterLab app and with Jupyter Notebook

app. Working with notebooks in the Jupyter lab is similar to working in the Jupyter Notebook tool.

3. Jupyter notebook
The Jupyter Notebook is an incredibly powerful tool for developing the interactive e-leaning courses. This menual will walk you through how to use Jupyter Notebooks on your local

machine.

A notebook integrates code and its output into a single document that combines visualizations, narrative text, mathematical equations, and other rich media. In other words: it’s a

single document where you can run code, display the output, and also add explanations, formulas, charts, and make your work more transparent, understandable, repeatable, and

shareable.

But unlike well-known text editors, all operations for creating a notepad are performed directly in the browser.

3.1. Jupyter notebook installation

As part of the open source Project Jupyter, Jupyter Notebooks are completely free. You can download the software as part of the Anaconda data science toolkit.

.

You can choose another variant of installation with link in the botton of the page:

Install Anaconda by following the instructions on the download page.

On Windows, after installation some applications will be available by default from Anaconda start menu including Jupyter Notebook and Anaconda Navigator. With Anaconda

Navigator, you can launch JupyterLab to test your developed course in a local work environment similar to SMSE. Also through Anaconda Navigator you get access to all

documentation of Jupyter project.

3.2. Starting a Notebook

3.2.1. Running Jupyter

Find the shortcut Anaconda in your start menu, expand it and select Anaconda Notebook item which will open a new tab in your default web browser that should look something like

the following screenshot.

This is start page of Jupyter with Notebook dashboard, specifically designed for managing Jupyter Notebooks. Since the Notebook Dashboard is running in browser on local machine,

URL for it is "localhost:8888/tree" (Jupyter server is running at TCP-port 8888 by default). When File tab is chosed, Dashboard gives access to the files and sub-folders from

Jupyter’s start-up directory located at path: C:/User/.

At the same time, an additional Jupyter Notebook (Anaconda3) shell window will open with information about starting the Notebook kernel:

Jupyter Notebook starts with Python3 server that uses as kernel. By default, you can build in your notebooks code fragments on Python language. The Python3 kernel will run this

code in interactive mode. In addition to Python3, IPython (Interactive Python shell) starts too. It provides a rich toolkit to help you make the most out of using Python and forms

interface of Notebook consisting from a set of cells.

You should not close this shell window, otherwise you will lose the ability to use all the services provided by the Jupyter server to work with a notebooks.

Some words about Jupyter. Jupyter is a name of a spin-off project which arose from IPython in 2014. The Jupyter name itself comes from the three core programming languages

supported by Jupyter:Julia, Python and R. Jupyter Notebook can connect to many kernels to allow programming in different languages and tools including not only those mentioned

above, but also Haskell, C++, Matlab, OpenModelica and etc. But by default, Ipython continues to exist in consist of Jupyter as a a web-based interactive computational environment

for creating Jupyter notebooks.

3.2.2. Work directory setting

You can change the start-up directory in this way:

1.Close all window of Jupyter.
2.Click on the Start Menu.
3.Click on the Anaconda item.
4.Right-click the Jupyter Notebook item and navigate to More => Open File Location.
5.Right-click the Jupyter Notebook entry, then click on Properties.
6.Enter a path in the Target box: delete "%USERPROFILE%" at the end of the executable path and type pfth to your work
directory, for example "D:/work/JuNB".
7.Press OK.

When you will run Jupyter Notebook againg start-up dashboard will be similar as like:

In the work directory you can collect developed notebooks' files.

3.2.3. Creating a new notebook document

A new notebook may be created at any time, either from the dashboard, or using the File ‣ New menu option from within an active notebook. In the first case, to create a new

notebook you have to take advantage of the "New" drop-down button in the top-right and select “Python 3”:

The new notebook is created within the same directory and will open in a new browser tab.

If you switch back to the dashboard, you will see the new file Untitled.ipynb and you should see some green badge in form of book near notebook name that tells you the notebook is

running. Each <>.ipynb file is one notebook, so each time you create a new notebook, a new <>.ipynb file will be created.

You can change the notebook name. For it you need back to the new notebook tab in browser and double click on Untitled name. In appied window type a new name and click

"Rename":

The process of creation a new notebook can be represented as below in form of gif-animation:

7

3.2.4. Running a notebook

There are two possibilities to run a notebook:

Create a new notebook

Upload an existing one

To download an existing notebook or any file, click the "Upload" button on the dashboard page, then click "Upload" botton in the row with appied file . You can create or upload a

notebook to a new directory by pre-creating it using the "New" drop-down button. After uploading the notebook file you have double click on the file name to run it.

You can see a set of running notebooks along with their directories via Running tab in Jupyter dashboard interface.

Moreover there is possibility to use IPython parallel via Clusters tab and additional installation.

3.2.5. A notebook structure

Based on IPython document structure the notebook consists of a sequence of cells. A cell is a multiline text input field, and its contents can be executed by using Run botton in the

menu bar. The execution behavior of a cell is determined by the cell’s type. Cell type options include Code, Markdown, Raw NBConvert (for text to remain unmodified by nbconvert),

and Heading.You can change the cell type of any cell in Jupyter Notebook using the Toolbar. The default cell type is Code.

To add new cell after selected one you have to use Keyboard Shortcut +. For example, you can add a new Code cell (In cell), type Python code (e.g. 3 + 4). and then run the cell.

When we run the cell, its output is displayed below.

All Code cells are consecutively numbered, and Out cell has same number as In cell. If you select Code cell again and run it the number of In cell and respectively Out cell will be

increased by 1.

Markdown cells are used to place text, pictures, graphics, mathematics, multimedia information. When a Markdown cell is executed, the Markdown code is converted into the

corresponding formatted rich text. Within Markdown cells, you can include mathematics in a straightforward way, using standard LaTeX notation. When the Markdown cell is

executed, the LaTeX portions are automatically rendered in the HTML output as equations with high quality typography.

Raw NBConvert cells provide a place in which you can write output directly. When passed through nbconvert installed within Anaconda, raw cells arrive in the destination format

unmodified. Basically it's only of any use if you intend to convert the notebook to another format not HTML, because by default nbconvert exports the notebook to HTML format. When

you do, cells marked as Raw NBConvert will be converted in a way specific to the output you're targetting.

As for Heading cells Jupyter no longer uses special heading cells. Instead, write your headings in Markdown cells using # characters.

So, Code cells and Markdown cells are the main types of cells used in practic. You can compose the learning document in a literate way, alternating descriptive text with code using

Code cells and rich text using Markdown cells.

You can change the order of cells within Jupyter Notebook using the up arrow and down arrow buttons on the menu bar. To do this, click inside the cell that you want to move and

then press the desired arrow as many times as you need to move the Cell to the desired location.

3.2.6. Saving and downloding a notebook

Each <>.ipynb file is a text file that describes the contents of your notebook in a format called JSON. In turn, each cell and its contents, including image attachments that have been

converted into strings of text, is listed there in along with some metadata. After the saving a notenook you can open and look it in WIndows Explorer. To save notebook, choose menu

item File/Save as... and type notebook name in appeared window:

Note, when you save the existing notebook under new name the new kernel will be run for the notebook with new name instead of the old notebook file. You will see it by green label

in form of book near notebook file in dashboard. You can save the opened notebook and fix the state of document as a checkpoint (date and time of notebook saving) choosing the

menu File/Save and Chekpoint or clicking on keyboard shortcut in form of floppy. Using the menu File/Revert to Chekpoint you can return to last saved state of the document.

Besides the saving of notebook as a <>.ipynb file there is ability to save the document in other formats choosing menu File/Download as:

Sush formats as Asciidoc, HTML, Markdown, Notebook, reST, Python, Reveal.js slides are saved directly from the menu. But if you will try to save the notebook in Latex format you

can get the following error message

After installetion Pandoc from https://pandoc.org/installing.html, place the pandoc.exe file in work directory.

To convert a notebook file from <>.ipynb to pdf format you will need to install MikTeX (https://miktex.org/). You can keep your installation as minimal as possible (“Just enough TeX”).

MiKTeX prompts you to install several packages when you run this command at the first time, this may need several minutes.

Instead of MikTex there is more easy way to convert notebook file in pdf via <>.html format using online convertor called by link https://www.sejda.com/html-to-pdf. In this case you

need't Latex format as an intermediate one.

As example, all saved files in converted formats are collected in separate directory:

.

3.2.7. Close and Shutdown Jupyter Notebook

To close Jupyter Notebook files (.ipynb), you can close the browser tab displaying the notebook, but you still need Shutdown the notebook from the dashboard.

To Shutdown a Jupyter Notebook file (.ipynb), click in the checkbox to left of the filename and then click on Shutdown tab located above:

.

After all of your notebooks are closed and shut down, you can end your Jupyter Notebook session by clicking on the QUIT button at the top right of the dashboard. You can now close

the browswer tab for Jupyter Notebook. You can also log out of your server by clicking on Logout. This does not stop the notebook server, which will remain active. To close the

Jupyter terminal terminal, type the command exit and hitting Enter or just close the terminal window.

3.2.8. Overview of the Notebook UI

When you operate with a notebook, you will be taken to the notebook user interface (UI). This UI allows you to run code and author notebook documents interactively. The notebook

UI has the following main areas:

Menu

Toolbar

Notebook area and cells

You can find the menu bar under the title. Each menu contains many options, which will be discussed later.

A series of icons forming a toolbar helps the user perform frequently needed operations.

Notepad enters edit mode when you click on a cell. Notice the pencil symbol next to the kernel name.

The kernel indicator symbol is displayed to the right of the kernel name. Note that a hollow circle means the core is not in use, while a solid circle means it is busy.

Selecting "Not Trust" button that next to the pencil symbol and click Trusted option you will immediately reload this notebook in a trusted state. The security problem you need to solve

is that no code should execute just because a user has opened a notebook that they did not write. Like any other program, once a user decides to execute code in a notebook, it is

considered trusted, and should be allowed to do anything. Notebooks store a signature in metadata, which is used to answer the question “Did the current user do this?”. This

signature is a digest of the notebooks contents plus a secret key, known only to the user. The secret key is a user-only readable file in the IPython profile’s security directory. When a

notebook is opened by a user, the server computes a signature with the user’s key, and compares it with the signature stored in the notebook’s metadata. If the signature matches,

HTML and Javascript output in the notebook will be trusted at load, otherwise it will be untrusted. Note, any output generated during an interactive session is trusted. A notebook’s

trust is updated when the notebook is saved. If there are any untrusted outputs still in the notebook, the notebook will not be trusted, and no signature will be stored. If all untrusted

outputs have been removed (either via Clear Output or re-execution), then the notebook will become trusted.

You can learn more about Jupyter Notebook UI by link https://www.tutorialspoint.com/jupyter/jupyter_notebook_user_interface.htm.

3.3. Editing a notebook

3.3.1. Edit and Code modes

The Jupyter Notebook has a modal user interface. This means that the keyboard does different things depending on which mode the Notebook is in. There are two modes: edit mode

and command mode.

Edit mode

Edit mode is indicated by a green cell border and a prompt showing in the editor area:

When a cell is in edit mode, you can type into the cell, like a normal text editor.

Enter edit mode by pressing Enter or using the mouse to click on a cell’s editor area for Code cell or double click on the cell’s editor area for other type cell.

Command mode

Command mode is indicated by a grey cell border with a blue left margin:

When you are in command mode, you are able to edit the notebook as a whole, but not type into individual cells. Most importantly, in command mode, the keyboard is mapped to a

set of shortcuts ("Help\Keyboard shortcuts") that let you perform notebook and cell actions efficiently.

Don’t try to type into a cell in command mode for Code cells; unexpected things will happen!

Enter command mode by pressing Esc.

3.3.2. Markdown cells

Text and images can be added to Jupyter Notebooks using Markdown cells that is a popular markup language as a superset of HTML. This manual introduces only the basic

elements of the language used in the preparation of training courses.

3.3.3. Text editing

3.3.3.1 Text selection

You can make some text italic or bold by surrounding a block of text with a single or double * respectively right before and after the text.

3.3.3.2. Lists

You can build nested unenumerated lists using * or - symbols and gap before items of list on different levels:

First level

Second level

Second level

Third level

Third level

Again First level

The first level of list will be marked with solid circle, the second level - solid square and the third level - empty circle.

When constructing enumerated lists, the levels of the list should be separated by empty lines:

1.Here we go

1.1.Sublist
1.2.Sublist

2.There we go

2.1.Sublist
 2.1.1. Right
 2.1.2. Left

3.3.3.3. Headings

The Markdown markup language supports 2 heading styles: underlining and highlighting with the symbol ("#"). Highlighting headings using underlining is done with equal signs ("=") if

the heading is the first level, and hyphens ("-") if the heading is the second level. The number of underscores is not limited. When highlighting headings using the symbol ("#"), one to

six of these characters are used, which are set at the beginning of the line (before the heading). In this case, the number of characters corresponds to the heading level. In addition, it

is possible to provide closing characters ("#") in the title, although this is not required. The number of closing characters does not have to match the number of beginning characters.

The title level is determined by the number of initial characters. Headings of the first and second levels, made with underlining, look like this:

First level heading
================
Second level heading

Headings of the first, third and sixth levels, made with the symbol ("#"), look like this:

First level heading
Third level heading
Level 6 heading

The above headings made with the symbol ("#") are identical to the following:

First level heading
Third level heading
Sixth level heading

3.3.3.4. Horizontal lines (separators)

To create a horizontal line using Markdown language syntax, you must place three (or more) hyphens or asterisks on a single line of text. There may be spaces between them.

Horizontal lines in Markdown look like this:

The first part of the text to be split

The second part of the text to be split

or

The first part of the text to be split

The second part of the text to be split

As a result, the following is displayed on the screen:

The first part of the text to be split

The second part of the text to be split

When using this tool, it is important to remember that after the first part of the text and before the second, you must leave an empty line. This rule must be observed only when using

hyphens. If it is not followed, a second-level heading and a line of plain text will be displayed on the screen. When using the asterisk symbol, this rule can be ignored.

3.3.3.5. Code Blocks

Formatted code blocks are used when necessary to quote the source code of programs or markup. To create a block of code in Markdown, each line of a paragraph must be indented

with four spaces or one tab character. The block of code continues until an unindented line (or end of text) is encountered. Inside a block of code, ampersands ("&") and angle

brackets ("<" and ">") are automatically converted to HTML markup elements. Also, it should be noted that inside code blocks, normal Markdown syntax is not processed. The code

block in Markdown looks like this:

This is a block of code

3.3.3.6. String code fragments

To mark a fragment of a line containing code, you must surround it with backticks " ` ".

On a standard PC keyboard, there are three dashed characters: " ' ", " " " and " \ ".

When using code snippets of strings, the text will be displayed as a monospaced font. Unlike code blocks, a code snippet allows you to place code inside a regular paragraph of text.

The code snippet of a string in Markdown looks like this:

Use an statement exit

Backslash

It can be used in Markdown before special characters so that they are perceived in their literal (and not official) meaning. The full list of these symbols is given below:

"\" - slash;

"`" - backtick;

"*" - asterisk;

"_" - underscore character;

"{}" - curly braces;

"[]" - square brackets;

"()" - round brackets;

"#" - hash symbol;

"+" - plus;

"-" - minus (hyphen);

"." - dot;

"!" - Exclamation point.

3.3.3.7. Quotes

Markdown uses the greater-than sign (>) to indicate quotes. It can be inserted both before each line of a quotation, and only before the first line of a paragraph. Markdown syntax also

allows you to create nested quotes (quotes within quotes). Additional levels of quotation marks (">") are used to mark them up. Quotes in Markdown can contain all sorts of markup

elements. Quotes in Markdown look like this:

>This is an example of a quote

> in which before each line

> put an angle bracket.

>This is an example of a quote

in which angle bracket

placed just before the beginning of a new paragraph.

>Second paragraph.

Nesting a quote within a quote looks like this:

> First level of quoting

>> Second level of quoting

>>> Third level of quoting

>First level citation

As a result, the following is displayed on the screen:

This is an example of a quote

in which before each line

put an angle bracket.

This is an example of a quote where the angle bracket is placed just before the start of a new paragraph.

Second paragraph.

Embedded quote:

First citation level

Second level citation

Third level of citation

First citation level

The citation level cannot exceed the 15th.

3.3.3.8. Images

There are some ways to insert images into a document:

a. By directly specifying the URL of the image. The syntax for this command is as follows:

![alt text](attachment:/path/to/image.png)

or

![alt text](attachment:/path/to/image.png "Hint")

In other words, it consists of the following elements:

Exclamation point;

square brackets that indicate alternative text for the image (it will become the content of the attribute in the img element);

parentheses containing the URL or relative path of the image, and optionally, a tooltip enclosed in double quotes.

b. With an ID tag. The syntax of this command is written as follows:

![alt text][id]

where "id" is the name of a particular image tag. Image labels are defined using a syntax that is exactly the same as hyperlink labels:

[id]: path/to/image "Optional hint"

c. Use the menu Edit/ Insert image

d. Use HTML tegs - in this case you can set image dimensions (width, height):

3.3.3.9. Links

As images but without of exclamation point. Markup text that starts with http or https automatically displays a hyperlink. To attach a link to text, place the text in square brackets [] and

include the link in brackets (), including the hover text. The following screenshot will explain this.

[Home page of project Jupyter](https://jupyter.org "Project Jupyter")

Home page of project Jupyter

3.3.3.10. Formulars

Use LaTex notation (https://latexbase.com) to insert formulas into text. For example, the formula for solving the quadratic is:

$$ x_{1,2} = {-b\pm\sqrt{b^2 - 4ac} \over 2a} (1)

or inside text

$ x_{1,2} = {-b\pm\sqrt{b^2 - 4ac} \over 2a} $

Formula of quadratic

3.3.3.11. Table

A table can be built using | (pipe symbol) and - (dash) to mark columns and rows. Note that characters do not need to be exactly aligned when typing. It should only occupy the

appropriate space of column boundaries and row boundaries. Notebook will automatically resize to fit content:

|Name|Phone|

|----|-----|

|Peter|+380501234567|

|John|+475876767606|

Name Phone

Peter +380501234567

John +475876767606

4. Examples

4.1. Jupyter notebook examples

Jupyter Notebook is an ideal tool for data cleaning and transformation, numerical simulation, statistical modeling, machine learning, etc. It helps to create and share documents that

contain narration, code and code output.You can create interactive visualizations, presentations and other documents such as your research thesis in a Jupyter Notebook with one or

a combination of the programing languages it supports.

4.1.1. Multikernel notebook example

Jupyter Notebook has support for over 40 programming languages, including those popular in Data Science such as Python, R, Julia, Octave. With Multikernel-notebook server let's

plot heart shapes using R, Julia, Octave and Python on the same Jupyter Notebook session.

Start multikernel-notebook server and use menu File->New-Notebook:

Heart with Python

At first, plot heart shapes using Python language. Change kernel using menu Kernel->Change Kernel..., select Python kernel and run the cell below using menu Run->Run Selected
Cells or click on the triangular button at the top of the main work area. The result will be appeared in the out cell:

Text(0.5, 1.0, 'Heart with Python')

Heart with R

Now, plot heart shapes using R language. For it, change kernel using menu Kernel->Change Kernel..., select R kernel and run the cell below. The result will be appeared in the out

cell:

Heart with Octave

Plot heart shapes using Octave language. For it, change kernel using menu Kernel->Change Kernel..., select Octave kernel and run the cell below. The result will be appeared in

the out cell:

4.1.2. OpenModelica kernel example

Openmpdelica (OM) is an open-source Modelica-based modeling and simulation environment intended for industrial and academic usage. Its long-term development is supported by

a non-profit organization – the Open Source Modelica Consortium (OSMC) - https://www.openmodelica.org/.

The goal with the OpenModelica is Modeling, Simulation, and Development of CyberPhysical Systems.

OM models can be embedded to an Jupyter notebook via OMPython API that is available throuw OpenModelica kernel. Further you need run OM models directly under Python 3

kernel.

As example, the "Bouncing ball" OM model is considered.

Bouncing Ball model

Let us consider the behavior of a bouncing ball bouncing on a flat horizontal surface. When the ball is above the surface, it accelerates due to gravitational forces. When the ball

eventually comes in contact with the surface, it bounces off the surface according to the following relationship:

where is the (vertical) velocity of the ball immediately after contact with the surface, is the velocity prior to contact and is the coefficient of restitution, which is a

measure of the fraction of momentum retained by the ball after the collision.

Bringing all this together in Modelica might look something like this:

Implementation all this in Modelica might look something like this:

In this model, the parameter specifies the initial height of the ball off the surface and the parameter to specify the coefficient of restitution. The variables and $ v 4 represent

the the height and vertical velocity, respectively.

The cetral part in the model is an equation. Let's give some explonation about it.

A when statement is composed of two parts. The first part is a conditional expression that indicates the moment the event takes place. In this case, the event will take place when the

height, h, first drops below 0. The second part of the when statement is what happens when the event occurs. In this case, the value of v is re-initialized via the reinit operator. The

reinit operator allows us to specify a new initial condition for a state. Conceptually, you can think of reinit as being like an initial equation inserted in the middle of a simulation. But it

only changes one variable and it always sets it explicitly (i.e., it isn’t as flexible as an initial equation). In this case, the reinit statement will reinitialize the value of v to be in the

opposite direction of the value of v before the collision, represented by pre(v), and scaled by the factor e.

Assuming that h0 has a positive value, the relentless pull of gravity ensures that the ball will eventually hit the surface. Running the simulation in Openmodelica for the case where h0
is 1.0 gives the following behavior from this model:

This model can be saved from OM as a file with extension < >.mo: BouncingBall.mo. Copy the file to work darectory and run the model from JupyterLab. For it on multikernel-

notebook or openmodelica-notebook server in JupyterLab select the kernel Python 3 and run the next code:

<AxesSubplot:xlabel='time'>

You can see modeling result it table view if run modeling in separate cells, for example in such manner:

time h v der(h) der(v) v_new foo flying impact

0 0.000 1.000000e+00 0.00000 0.00000 -9.81 0.0 2 1 0

1 0.006 9.998234e-01 -0.05886 -0.05886 -9.81 0.0 2 1 0

2 0.012 9.992937e-01 -0.11772 -0.11772 -9.81 0.0 2 1 0

3 0.018 9.984108e-01 -0.17658 -0.17658 -9.81 0.0 2 1 0

4 0.024 9.971747e-01 -0.23544 -0.23544 -9.81 0.0 2 1 0

...

687 2.982 2.101988e-11 0.00000 0.00000 0.00 0.0 1 0 1

688 2.988 2.101988e-11 0.00000 0.00000 0.00 0.0 1 0 1

689 2.994 2.101988e-11 0.00000 0.00000 0.00 0.0 1 0 1

690 3.000 2.101988e-11 0.00000 0.00000 0.00 0.0 1 0 1

691 3.000 2.101988e-11 0.00000 0.00000 0.00 0.0 1 0 1

692 rows × 9 columns

Note: during modeling a set of BouncingBall.<> files with different extentions including and BouncingBall_res.csv will appear in work directory. Yoy can delete unnecessary files using

menu called by right-button of mouse.

4.1.3. Matlab kernel example

You need to use Matlab-notebook server with Matab kernel to include matlab command in your Jupyter notebook. This is due to MAblab kernel required another version of Python

(Python 9) than other kernels which use Python 10.

So, stop your server, call SMSE from Moodle and select matlab-notebook server. Your JupyterLab dashboard will have view as below:

You can immediately check a work of Matlab interpreter and the version of installed Matlab running such code:

hello from MATLAB

ans =

 '9.12.0.2039608 (R2022a) Update 5'

Lets create Jupyter notebook with kernel Matlab using some examples from Matlab documentation https://www.mathworks.com/help/matlab/

Create Line Plot

Define x as 100 linearly spaced values between −2π and 2π. Define y1 and y2 as sine and cosine values of x. Create a line plot of both sets of data.

Run next code to see result of plotting:

Controlling Random Number Generation

This example shows how to use the rng function, which provides control over random number generation. Run next code to see result of plotting:

h =

 Histogram with properties:

 Data: [10000x1 double]
 Values: [2 2 1 6 7 17 29 57 86 133 193 271 331 421 540 613 ...]
 NumBins: 37
 BinEdges: [-3.8000 -3.6000 -3.4000 -3.2000 -3 -2.8000 -2.6000 ...]
 BinWidth: 0.2000
 BinLimits: [-3.8000 3.6000]
 Normalization: 'count'
 FaceColor: 'auto'
 EdgeColor: [0 0 0]

 Use GET to show all properties

4.2. New Moodle course example

To create a new Moodle course, go to https://eln.stu.cn.ua/login/index.php and select English (UK) from the dropdown list in the top right corner of the Moodle page.

Then log in to the Moodle.

In Course categories select SMSE CybPhys.

CLick on the button More in the right side of the page and select Add a new course

In appeared form fill the course setting the fields (here Simulation course name is used only as example):

Then click on the Save and display button in the bottom of form.

In appeared course page switch on the field Edit mode in the top right corner:

Then in General section click on + Add an activity ar resourse and select External tool:

In the form that appears, specify the Action name you prefer and set the Preconfigured Tool to jupyterhubSMSE:

Then click on the Save abd return to course in the bottom of form.

When you return to course page switch off edit mode:

You are now ready to fill the course with content. Use link SMSE on stu.cn.ua for start SMSE server according to the manual.

If you save your password in browser you can get error: 404 when you call SMSE. In this case you need return to edit the External Tool, select Show more... link in General section

and remove text in Shered secret field, then click Save and return to course.

In [31]: 3+4

Out[31]:

x1,2 = (1)
−b ± √b2 − 4ac

2a

x1,2 =
−b±√b2−4ac

2a

In [1]: # Heart with Python
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize = [8, 7])
t = np.arange(0,2*np.pi, 0.1)
x = 16*np.sin(t)**3
y = 13*np.cos(t)-5*np.cos(2*t)-2*np.cos(3*t)-np.cos(4*t)
plt.plot(x,y)
plt.title("Heart with Python")

Out[1]:

In [1]: # Heart with R
options(repr.plot.width = 6)
options(repr.plot.height = 5)

t = seq(0, 2*pi, by = 0.01)
x = 16 * sin(t)^3
y = 13 * cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t)
plot(x, y, main = "Heart with R", xlab = "", ylab = "", col = "red")

In [1]: # Heart with Octave
t=-10:0.01:10;
x=16*(power(sin(t),3));
y=(13*cos(t))-(5*cos(2*t))-(2*cos(3*t))-(cos(4*t));
plot(x,y)
title("Heart with Octave", 'Color','k','fontsize',18)

vfinel = −evinitial

vfinel vinitial e

h0 e h

In [1]: import OMPython
from OMPython import OMCSessionZMQ
omc = OMCSessionZMQ()
curworkdir = omc.sendExpression("cd()")
omc.sendExpression("loadFile(\"BouncingBall.mo\")")
omc.sendExpression("simulate(BouncingBall, stopTime=3.0, outputFormat=\"csv\")")
import pandas as pd
df = pd.read_csv('BouncingBall_res.csv');df
import matplotlib as mpl
import matplotlib.pyplot as plt
df.plot(x="time", y="h")

Out[1]:

In [2]: omc.sendExpression("simulate(BouncingBall, stopTime=3.0, outputFormat=\"csv\")")
{'resultFile': '/home/jovyan/work/BouncingBall_res.csv',
 'simulationOptions': "startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'BouncingBal
 'messages': 'LOG_SUCCESS | info | The initialization finished successfully without homotopy method.\nLOG_SUCCESS | info | The si
 'timeFrontend': 0.002347285,
 'timeBackend': 0.012489046,
 'timeSimCode': 0.001740524,
 'timeTemplates': 0.006291234000000001,
 'timeCompile': 0.5490572920000001,
 'timeSimulation': 0.057988269,
 'timeTotal': 0.630092737}
import pandas as pd
df = pd.read_csv('BouncingBall_res.csv'); df

Out[2]:

In [1]: disp('hello from MATLAB')

In [2]: version

In [3]: x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

In [4]: x = randn(10000,1);
h = histogram(x)

https://eln.stu.cn.ua/login/index.php?lang=en
https://youtu.be/A5YyoCKxEOU
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://www.anaconda.com/products/distribution
https://pandoc.org/installing.html
https://miktex.org/
https://www.sejda.com/html-to-pdf
https://www.tutorialspoint.com/jupyter/jupyter_notebook_user_interface.htm
https://jupyter.org/
https://latexbase.com/
https://www.openmodelica.org/
https://www.mathworks.com/help/matlab/
https://eln.stu.cn.ua/login/index.php

